

community project

encouraging academics to share statistics support resources

All stcp resources are released under a Creative Commons licence

Statistical Methods 14 Sample Size Calculations

Based on materials provided by Coventry University and Loughborough University under a National HE STEM Programme Practice Transfer Adopters grant

Peter Samuels Birmingham City University Reviewer: Ellen Marshall University of Sheffield

Type II errors and sample size calculations

We shall consider:

- ☐ Things that can go wrong in statistical testing (recap from Workshop 8)
- □ Effect sizes
- Statistical power
- Power calculations

Things that can go wrong

	H ₀ really true	H ₀ really false
H ₀ rejected	Type I error	Correct decision
H ₀ accepted	Correct decision	Type II error

- ☐ Type I error is equivalent to **convicting the innocent**
- ☐ Type II error is equivalent to **acquitting the guilty**
- □ Reducing the chance of a Type I error by changing the significance threshold increases the chance of a Type II error
- ☐ The best solution is to increase the sample size
- □ The power of a test is 1 Probability(Type II error)

Effect sizes

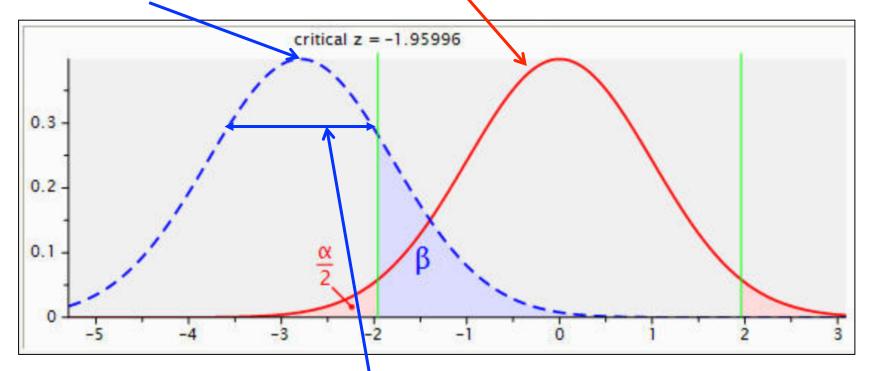
- Different definitions
- ☐ A common one is Cohen's *d*:
 - Figure Given two samples X_1 and X_2 , $d=|X \downarrow 1 X \downarrow 2 / s|$
 - ➤ Where s is the standard deviation of the combined sample X₁ and X₂
 - ➤ Cohen (1988) classifies *d* as follows:

Effect size	Interpretation		
0.2 to 0.3	Small		
About 0.5	Medium		
0.8 and above	Large		

Example

For the Pulse data set:

- \square X₁ = Initial pulse for non/not regular smokers
- \square X_2 = Initial pulse for regular smokers
- $\Box X \downarrow 1 = 71.94$
- $\Box X \downarrow 2 = 76.00$
- \Box s = 10.75
- \Box *d* = 0.378
- ☐ So the effect size of smoking on pulse for the samples is "small to medium"


Statistical power

- Just as there is a standard level of statistical significance (α) of 0.05 to reduce the possibility of Type I errors there is also a recommended minimum value for the power of statistical test of **0.8**
- □ This means the cut-off value for the probability of a Type II error (β) is 0.2
- Given α and an estimate of the effect size (*d*) the minimum sample size(s) required to achieve a given power level (1- β) can be calculated
- Note: The effect size must be estimated before the experiment, e.g. from prior research, and not based on the data

Example – normal distribution

- ☐ Standard normal distribution (mean 0, standard deviation 1)
- ☐ Estimate of second sample parameter mean based on *X* 1/2

- \Box α = 0.05, β = 0.2
- \Box Standard deviation of estimate is proportional to $1/\sqrt{n}$

Sample sizes for t-tests

Paired samples t-test, α = 0.05, β = 0.8:

Effect	Small	Medium	Large
Effect size	0.2	0.5	8.0
Minimum total sample size	199	34	15

Independent samples t-test, α = 0.05, β = 0.8, equal sample sizes:

Effect	Small	Medium	Large
Effect size	0.2	0.5	8.0
Minimum sample size per group	392	64	26

Reviewer: Ellen Marshall University of Sheffield

Application – Pulse data

- \Box d = 0.378 (from the data)
- ☐ If we had assumed a small effect size we would have needed 392 in each group with equally sized groups
- ☐ If we had assumed a medium effect size we would have needed 64 in each group with equally sized groups
- □ As there were 64 in Group 1 and 27 in Group 2 we could have used http://www.biomath.info/power/ttest.htm to estimate the group sizes with this ratio for an effect size of 0.5:
 - ➤ Minimum Group 1 size = 105
 - ➤ Minimum Group 2 size = 45
- ☐ Clearly there were insufficient sample sizes to reduce the risk of a Type II error to a satisfactory level

Bibliography

- Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences, 2nd ed. New York: Lawrence Erlbaum.
- Columbia University Medical Center (n. d.) What is your study design? Available at: http://www.biomath.info/power/index.htm [Accessed 8/01/14].
- Fox, N., Hunn, A. & Mathers, N. (2009) Sampling and sample size calculation. [pdf]Available at: http://rds-eastmidlands.nihr.ac.uk/resources/doc_download/9-sampling-and-sample-size-calculation.html [Accessed 8/01/14].
- Heinrich-Heine-Universität Düsseldorf (2013) *G*Power 3*. Available at:
 - http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/ [Accessed 8/01/14].
- statstutor (2006) Statistics: An introduction to sample size calculations. [pdf] Available at:
 http://www.statstutor.ac.uk/resources/uploaded/sample-size.pdf [Accessed 8/01/14].

