The statistical problem solving cycle

Data are numbers in context and the goal of statistics is to get information from those data, usually through *problem solving*. A procedure or paradigm for statistical problem solving and scientific enquiry is illustrated in the diagram. The dotted line means that, following discussion, the problem may need to be re-formulated and at least one more iteration completed.

Descriptive statistics

Given a sample of n observations, x_1, x_2, \ldots, x_n , we define the **sample mean** to be

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{\sum x_i}{n}$$

and the *corrected* sum of squares by

$$S_{xx} = \sum (x_i - \bar{x})^2 \equiv \sum x_i^2 - n\bar{x}^2 \equiv \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$

 $\frac{S_{xx}}{n}$ is sometimes called the *mean squared deviation*. An **unbiased estimator** of the population variance, σ^2 , is $s^2 = \frac{S_{xx}}{(n-1)}$. The **sample standard deviation** is s. In calculating s^2 , the divisor (n-1) is called the **degrees of freedom**

(df). Note that s is also sometimes written $\hat{\sigma}$.

If the sample data are ordered from smallest to largest then the:

minimum (Min) is the smallest value;

lower quartile (LQ) is the $\frac{1}{4}(n+1)$ -th value; median (Med) is the middle [or the $\frac{1}{2}(n+1)$ -th] value; upper quartile (UQ) is the $\frac{3}{4}(n+1)$ -th value; maximum (Max) is the largest value.

These five values constitute a **five-number summary** of the data. They can be represented diagrammatically by a *box-and-whisker plot*, commonly called a *boxplot*.

Grouped Frequency Data

If the data are given in the form of a grouped frequency distribution where we have f_i observations in an interval whose mid-point is x_i then, if $\sum f_i = n$

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{\sum f_i x_i}{n} \quad \text{and}$$
$$S_{xx} = \sum f_i (x_i - \bar{x})^2 = \sum f_i x_i^2 - \frac{(\sum f_i x_i)^2}{n}.$$

Events & probabilities

The *intersection* of two events A and B is $A \cap B$. The union of A and B is $A \cup B$. A and B are **mutually exclusive** if they cannot both occur, denoted $A \cap B = \emptyset$ where \emptyset is called the **null event**. For an event A, $0 \leq P(A) \leq 1$. For two events A and B

 $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

If A and B are mutually exclusive then

 $P(A \cup B) = P(A) + P(B).$

Equally likely outcomes

If a complete set of n elementary outcomes are all equally likely to occur, then the probability of each elementary outcome is $\frac{1}{n}$. If an event A consists of m of these n elements, then $P(A) = \frac{m}{n}$.

Independent events

A, B are independent if and only if $P(A \cap B) = P(A)P(B)$.

Conditional Probability of A given B:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 if $P(B) \neq 0$.

Bayes' Theorem: $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$.

Theorem of Total Probability

The k events $B_1, B_2, \ldots B_k$ form a partition of the sample space S if $B_1 \cup B_2 \cup B_3 \ldots \cup B_k = S$ and no two of the B_i 's can occur together. Then $P(A) = \sum P(A|B_i)P(B_i)$. In

this case Bayes' Theorem generalizes to

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{\sum_i P(A|B_j)P(B_j)} \qquad (i = 1, 2, \dots k)$$

If B' is the *complement* of the event B, P(B') = 1 - P(B)and P(A) = P(A|B)P(B) + P(A|B')P(B') is a special case of the theorem of total probability. The complement of the event B is commonly denoted \overline{B} .

www.mathcentre.ac.uk

© mathcentre 2009

For the help you need to support your course

Guide to Statistics: Probability & Statistics Facts, Formulae and Information

mathcentre is a project offering students and staff free resources to support the transition from school mathematics to university mathematics in a range of disciplines.

www.mathcentre.ac.uk

This leaflet has been produced in conjunction with and is distributed by the Higher Education Academy Maths, Stats & OR Network.

For more copies contact the Network at **info@mathstore.ac.uk**

13799 D&PS Jan1

Permutations and combinations

The number of ways of selecting r objects out of a total of n, where the order of selection is important, is the number of **permutations**: ${}^{n}P_{r} = \frac{n!}{(n-r)!}$. The number of ways in which r objects can be selected from n when the order of selection is not important is the number of **combinations**: ${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$. ${}^{n}C_{n}$ must equal 1, so 0! = 1 and ${}^{n}C_{0} = 1$; ${}^{n}C_{r} = {}^{n}C_{n-r}$. Also ${}^{n}C_{0} + {}^{n}C_{1} + \dots {}^{n}C_{n-1} + {}^{n}C_{n} = 2^{n}$

$$^{n+1}C_r = ^n C_r + ^n C_{r-1}$$

Random variables

Data arise from observations on variables that are **measured** on different **scales**. A *nominal* scale is used for named categories (e.g. race, gender) and an *ordinal* scale for data that can be ranked (e.g. attitudes, position) - no arithmetic operations are valid with either. *Interval* scale measurements can be added and subtracted only (e.g. temperature), but with *ratio* scale measurements (e.g. age, weight) multiplication and division can be used meaningfully as well. Generally, random variables are either *discrete* or *continuous*. Note: in reality, all data are discrete because the accuracy of measuring is always limited.

A **discrete** random variable X can take one of the values x_1, x_2, \ldots , the probabilities $p_i = P(X = x_i)$ must satisfy $p_i \ge 0$ and $p_1 + p_2 + \ldots = 1$. The pairs (x_i, p_i) form the **probability mass function** (pmf) of X.

A continuous random variable X takes values x from a continuous set of possible values. It has a **probability density** function (pdf) f(x) that satisfies $f(x) \ge 0$ and $\int f(x)dx =$

1, with
$$P(a < x \le b) = \int_{a}^{b} f(x) dx$$
.
Expected values

The expected value of a function H(X) of a random variable X is defined as

$$E[H(X)] = \begin{cases} \sum H(x_i)P(X = x_i), & X \text{ discrete.} \\ \int H(x)f(x)dx, & X \text{ continuous.} \end{cases}$$

Expectation is linear in that the expectation of a linear combination of functions is the same linear combination of expectations. For example,

$$E[X^{2} + \log X + 1] = E[X^{2}] + E[\log X] + 1$$

$$E[\log X] \neq \log E[X]$$
 and $E[1/X] \neq 1/E[X]$

Variance

The variance of a random variable is defined as

$$\operatorname{Var}(X) = \operatorname{E}[(X - \mu)^2] \equiv \operatorname{E}[X^2] - \mu^2$$

Properties:

 $\operatorname{Var}(X) \ge 0$ and is equal to 0 only if X is a constant. $\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$, where a and b are constants.

Moment generating functions

The moment generating function (mgf) of a random variable is defined as

$$M_X(t) = \mathbb{E}[\exp(tX)]$$
 if this exists.

 $E[X^k]$ can be evaluated as the:

(i) coefficient of
$$\frac{t}{t}$$
 in the power expansion of $M_X(t)$.

(i) *r*-th derivative of $M_X(t)$ evaluated at t = 0.

Measures of location

The **mean** or **expectation** of the random variable X is E[X], the long-run average of realisations of X. The **mode** is where the **pmf** or **pdf** achieves a maximum (if it does so). For a random variable, X, the **median** is such that $P(X \le \text{median}) = \frac{1}{2}$, so that 50% of values of X occur above and 50% below the median.

Percentiles

 x_p is the 100-*p*-th percentile of a random variable X if $P(X \le x_p) = p$. For example, the 5th percentile, $x_{0.05}$, has 5% of the values smaller than or equal to it. The **median** is the 50-th percentile, the **lower quartile** is the 25th percentile, the **upper quartile** is the 75th percentile. **Measures of dispersion**

The inter-quartile range is defined to be the difference between the upper and lower quartiles, UQ - LQ. The **standard deviation** is defined as the square root of the variance, $\sigma = \sqrt{\operatorname{Var}(X)}$, and is in the same units as the random variable X.

Cumulative Distribution Function

This is defined as a function of any real value t by

$F(t) = P(X \le t)$

If X is a continuous random variable, F is a continuous function of t; if X is discrete, then F is a step function.

v1. Mar.07

The Central Limit Theorem

If a random sample of size n is taken from *any* distribution with mean μ and variance σ^2 , the sampling distribution of the mean will be *approximately* $\sim N(\mu, \sigma^2/n)$, where \sim means 'is distributed as'. The larger n is, the better the approximation.

The standard normal and Student's t distributions

If a random variable $X \sim N(\mu, \sigma^2)$, $z = (X - \mu)/\sigma \sim N(0, 1)$, the standard normal distribution. The t distribution with (n - 1) degrees of freedom is used in place of z for small samples size n from normal populations when σ^2 is unknown. As n increases the distribution of t converges to N(0, 1). These distributions are used, e.g., for inference about means, differences between means and in regression.

Fisher's F distribution

If $X_1 \sim \chi^2_{\nu_1}$ and $X_2 \sim \chi^2_{\nu_2}$ are independent random variables then

$$\frac{X_1/\nu_1}{X_2/\nu_2} \sim F_{\nu_1,\nu_2}$$

the F distribution with (ν_1, ν_2) degrees of freedom. This distribution is used, for example, for inference about the ratio of two variances, in Analysis of Variance (ANOVA) and in simple and multiple linear regression.

but

Statistics & Sampling Distributions Population and samples

A (statistical) **population** is the complete set of all possible measurements or values, corresponding to the entire collection of units, for which inferences are to be made from taking a **sample** - the set of measurements or values that are actually collected from a population.

Simple random sample: every item in the population is equally likely to be in the sample, independently of which other members of the population are chosen.

Parameter: a quantity that describes an aspect of a population, eg. the population mean, μ , or variance, σ^2 .

Statistic: a quantity calculated from the sample, e.g. the sample mean, \bar{x} , or variance, s^2 .

Sampling distributions: The value of a statistic will in general vary from sample to sample, in which case it will have its own probability distribution, called its **sampling distribution**. A statistic used to estimate the value of a *parameter* θ in a distribution is called an **estimator** (the random variable) or an **estimate** (the value).

If $\hat{\theta}$ is an estimator of θ , the mean of its sampling distribution, $\mathbf{E}[\hat{\theta}]$, is called the *sampling mean*. The variance, $\operatorname{Var}(\hat{\theta})$, is called the *sampling variance*.

 $\sqrt{\operatorname{Var}(\hat{\theta})}$ is called the *standard error* of $\hat{\theta}$. If $\mathbf{E}[\hat{\theta}] = \theta$, then $\hat{\theta}$ is an unbiased estimator of θ e.g. \bar{X} is an unbiased estimator for μ and has sampling variance $\frac{\sigma^2}{n}$ where $\operatorname{Var}(X_i) = \sigma^2$, (i = 1, 2, ..., n).

Corrected sum of squares

$$S_{xx} = \sum (x_i - \bar{x})^2 \equiv \sum x_i^2 - n\bar{x}^2 \equiv \sum x_i^2 - \frac{(\sum x_i)^2}{n}$$

has expectation $(n-1)\sigma^2$ so that dividing S_{xx} by (n-1) will give an unbiased estimator of σ^2 , denoted s^2 .

Normal and Chi-squared distributions

If X_1, X_2, \ldots, X_n are independently and identically $\sim N(\mu, \sigma^2)$, then $\sum \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2$, a Chi-squared distribution with *n* degrees of freedom.

Also
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 independently of $\frac{S_{xx}}{\sigma^2} \sim \chi^2_{(n-1)}$.

Simple Linear Regression

To fit the straight line $y = \alpha + \beta x$ to data (x_i, y_i) , i = 1, 2, ..., n by the method of **least squares** the estimates of slope, β , and intercept, α , are given by:

$$b = \frac{\sum x_i y_i - \frac{1}{n} \left(\sum x_i \sum y_i \right)}{\sum x_i^2 - \frac{1}{n} \left(\sum x_i \right)^2} = \frac{S_{xy}}{S_{xx}}, \qquad a = \bar{y} - b\bar{x}$$

If we assume that the x_i are known and that the y_i have normal distributions with means $\alpha + \beta x_i$, and constant variance σ^2 , written as $y_i \sim N(\alpha + \beta x_i, \sigma^2)$, then if x_0 is a fixed value

$$b \sim N\left(\beta, \frac{\sigma^2}{S_{xx}}\right)$$
$$a \sim N\left(\alpha, \sigma^2\left\{\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right\}\right)$$
$$a + bx_0 \sim N\left(\alpha + \beta x_0, \sigma^2\left\{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right\}\right)$$

A common alternative is to use $\hat{\alpha}$ for *a* and $\hat{\beta}$ for *b*. Correlation

Given observations (x_i, y_i) , i = 1, 2, ..., n on two random variables X and Y the **Pearson (product moment**) correlation between them is given by:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{\sum x_i y_i - \frac{1}{n} \left(\sum x_i \sum y_i\right)}{\sqrt{\sum x_i^2 - \frac{1}{n} \left(\sum x_i\right)^2} \sqrt{\sum y_i^2 - \frac{1}{n} \left(\sum y_i\right)^2}}$$

We use r to estimate the correlation, ρ , between X and Y. For large n, r is approximately $\sim N\left(\rho, \frac{1}{n-2}\right)$. The **(Spearman)** Rank Correlation Coefficient is given by

$$r_S = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

where d_i is the difference between the ranks of (x_i, y_i) , i = 1, 2, ..., n. If ranks are tied, see further reading.

Further reading: Kotz, S., and Johnson,L. (1988) Encyclopedia of Statistical Sciences, Vols.1-9. New York: John Wiley and Sons.

Time Series

A time series Y_t (t = 1, 2, ..., n) is a set of n observations recorded through time t, (e.g. days, weeks, months). The arithmetic mean of blocks of k successive values

$$\frac{Y_1 + Y_2 + \ldots + Y_k}{k}, \frac{Y_2 + Y_3 + \ldots + Y_{k+1}}{k}, \ldots$$

is a **simple moving average** of order k, itself a time series which is *smoother* than Y_t and can be used to track, or estimate, the underlying level, μ_t , of Y_t . If $0 < \alpha < 1$ an **exponentially weighted moving average** (EWMA) at time t uses a discounted weighted average of current and past data to estimate μ_t with

$$\hat{\mu}_t = \alpha Y_t + \alpha (1-\alpha) Y_{t-1} + \alpha (1-\alpha)^2 Y_{t-2} + \dots$$

This is equivalent to the recurrence relation

$$\hat{\mu}_t = \alpha Y_t + (1 - \alpha)\hat{\mu}_{t-1}$$

Moving averages are often plotted on the same graph as Y_t . If Y_t additionally contains trend, R_t , the rate of change of data per unit time, and $\mu_t = \mu_{t-1} + R_{t-1}$, then the recurrence relation is

$$\hat{\mu}_t = \alpha Y_t + (1 - \alpha)(\hat{\mu}_{t-1} + \hat{R}_{t-1})$$

If $0 < \beta < 1$ the trend smoothing equation is

$$\hat{R}_{t} = \beta(\hat{\mu}_{t} - \hat{\mu}_{t-1}) + (1 - \beta)\hat{R}_{t-1}$$

known as Holt's Linear Exponential Smoothing. If Y_t also contain seasonality, S_t , a smoothing constant γ ,

 $(0 < \gamma < 1)$ is used in a seasonal smoothing equation, $\hat{S}_t = \gamma Y_t / \hat{\mu}_t + (1 - \gamma) \hat{S}_{t-k}$, assuming the periodicity is k, with multiplicative seasonality. For monthly data k = 12.

Forecasting from time n (now) to time n+h (h = 1, 2, ...)

Level only, $\hat{Y}_{n+h} = \hat{\mu}_n$, the latest EWMA.

Level and constant trend, $\hat{Y}_{n+h} = a + b(n+h)$, the simple linear regression trend line of Y_t against t.

Level and changing trend, $\hat{Y}_{n+h} = \hat{\mu}_n + h\hat{R}_n$.

Level, changing trend and seasonality $\hat{Y}_{n+h} = \hat{\mu}_n + h\hat{R}_n$, where $\hat{\mu}_n = \alpha Y_n / \hat{S}_{n-12} + (1-\alpha)(\hat{\mu}_{n-1} + \hat{R}_{n-1})$.

A hypothesis test involves testing a claim, or null hypothesis H_0 , about a parameter against an alternative, H_1 . A decision to reject H_0 or not reject H_0 uses sample evidence to calcu*late* a **test statistic** which is judged against a **critical value**. H_0 is maintained unless it is made untenable by sample evidence. Rejecting H_0 when we should not is a **Type I error**. The probability (we are prepared to accept) of making a Type I error is called the **significance level** α and yields the critical value. The smallest α at which we can just reject H_0 is the *p*-value of the test. Not rejecting H_0 when we should is a **Type II error**, with probability β . The **power** of a hypothesis test is $1-\beta$. An **inter**val estimate for a parameter is a *calculated* range within which it is deemed likely to fall. Given α , the set of intervals from infinitely repeated random samples of size n will contain the parameter $(100 - \alpha)\%$ of the time: each interval is a $(100 - \alpha)\%$ confidence interval.

Standard statistical distributions

One sample hypothesis tests

1. For $X \sim N(\mu, \sigma^2)$, σ^2 known; random sample evidence \bar{x} and n. Null hypothesis, $H_0: \mu = \mu_0$; 2-sided alternative $H_1: \mu \neq \mu_0$. Test statistic $z_{\text{calc}} = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$. Reject H_0 (at the α level) if $|z_{\text{calc}}| \geq z_{\alpha/2}$, the critical value of z. **2.** For $X \sim N(\mu, \sigma^2)$, σ^2 unknown; random sample evidence

 \bar{x} , s and n. Null hypothesis, $H_0: \mu = \mu_0$; 2-sided alternative $H_1: \mu \neq \mu_0$. Test statistic $t_{\text{calc}} = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \sim t_{(n-1)}$, the t

distribution with (n-1) df. For n > 30 and if X has any distribution, $t \sim N(0, 1)$. Reject H_0 if $|t_{calc}| \geq t_{\alpha/2}$, the critical value of t with (n-1) df.

3. For $X \sim N(\mu, \sigma^2)$, σ^2 unknown; random sample evidence s and n. Null hypothesis, $H_0: \sigma^2 = \sigma_0^2$; alternative $H_1: \sigma^2 > \sigma_0^2$. Test statistic $\chi^2_{calc} = (n-1)s^2/\sigma_0^2 \sim \chi^2_{n-1}$. Reject H_0 if $\chi^2_{calc} > \chi^2_{\alpha}$, the critical value of χ^2 with (n-1) df.

In each case the p-value is the tail area outside the calculated statistic.

Two sample hypothesis tests

For $X_1 \sim N(\mu_1, \sigma_1^2)$, $X_2 \sim N(\mu_2, \sigma_2^2)$, σ_1^2 , σ_2^2 unknown; random sample evidence \bar{x}_1 , \bar{x}_2 , s_1^2 , s_2^2 , n_1 and n_2 . **1.** Null hypothesis, $H_0 = \mu_1 - \mu_2 = c$; 2-sided alternative H_1 : $\mu_1 - \mu_2 \neq c$. Test statistic $t_{calc} = \frac{(\bar{x}_1 - \bar{x}_2 - c)}{s\sqrt{1/n_1 + 1/n_2}} \sim t_{(n_1+n_2-2)}$, and $s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 + n_2 - 2)}$, assuming $\sigma_1^2 = \sigma_2^2$. Reject H_0 if $|t_{calc}| \geq t_{\alpha/2}$ the critical value of t with $(n_1 + n_2 - 2)$ df. **2.** Null hypothesis $H_0: \sigma_1^2 = \sigma_2^2$; alternative $H_1: \sigma_1^2 > \sigma_2^2$. Test statistic $F_{calc} = \frac{(n_1 - 1)s_1^2}{(n_2 - 1)s_2^2} \sim F_{n_1 - 1, n_2 - 1}$. Reject H_0 if $F_{calc} > F_\alpha$ the critical value of F with $n_1 - 1$ and $n_2 - 1$ df. **Confidence interval for a population mean** - σ^2 unknown If X has mean μ and variance σ^2 , with n > 30 an approximate $100(1 - \alpha)\%$ confidence interval for μ is $\bar{x} - \frac{t_{\alpha/2}s}{\sqrt{n}}$ to $\bar{x} + \frac{t_{\alpha/2}s}{\sqrt{n}}$. If $X \sim N(\mu, \sigma^2)$ the interval is exact for all n.

Name/parameters	Conditions/application	pdf/pmf	Mean	Variance	mgf	Notes
Binomial Bin (n, p) Positive integer n Probability $p, 0 \le p \le 1$	n independent success/fail tri- als each with probability p of success. X = number of suc- cesses.	$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$ $x = 0, 1, \dots, n$	np	np(1-p)	$(1-p+pe^t)^n$	$\begin{array}{l} X \sim \mathrm{Bin} \ (n,p) \\ \Rightarrow n - X \sim \mathrm{Bin}(n,1-p) \end{array}$
Geometric Geom (p) Probability $p, 0 \le p \le 1$	Repeated independent success/fail trials each with probability p of success. $X =$ number of trials up to and including the first success.	$P(X = x) = (1 - p)^{x - 1}p$ $x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{p\mathrm{e}^t}{1-(1-p)\mathrm{e}^t}$	Has the "lack of memory" property P(X > a + b X > b) = P(X > a)
Poisson Po (λ) λ a positive number	Events occur randomly at a constant rate. $X =$ number of occurrences in some interval. λ is the expected number of occurrences	$P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$ x = 0, 1, 2,	λ	λ	$\exp(\lambda(\mathrm{e}^t-1))$	Useful as approximation to $Bin(n, p)$ if n is large and p is small
Normal $N(\mu, \sigma^2)$ μ, σ both real; $\sigma > 0$	A widely used distribution for symmetrically distributed ran- dom variables with mean μ and standard deviation σ .	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ all real x	μ	σ^2	$\exp\!\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$	Can approximate Binomial, Poisson Pascal and Gamma distributions (see Central Limit Theorem)
Exponential $\operatorname{Expon}(\theta)$	Events are occurring at rate θ per unit time. $X =$ time to first occurrence.	$f(x) = \theta \exp(-\theta x)$ x > 0	$\frac{1}{\theta}$	$\frac{1}{\theta^2}$	$\frac{\theta}{\theta-t},t<\theta$	Has the "lack of memory" property P(X > a + b X > b) = P(X > a)
Negative-binomial or Pascal Pasc (r, p) Positive integer n Probability $p, 0 \le p \le 1$	Repeated independent success/fail trials each with probability p of success. $X =$ number of trials up to and including the <i>r</i> -th success.	$P(X = x) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r}$ x = r, r + 1, r + 2,	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p\mathrm{e}^t}{1-(1-p)\mathrm{e}^t}\right)^r$	$\operatorname{Pasc}(1,p) \equiv \operatorname{Geom}(p)$
$ \begin{array}{l} \operatorname{Gamma} \\ \operatorname{Ga}(\alpha,\beta) \\ \alpha,\beta>0 \end{array} $	Generalization of the exponen- tial distribution; if α is an in- teger it represents the waiting time to the α -th occurrence of a random event where β is the expected number of events.	$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$ $x > 0$	$\frac{\frac{\alpha}{\beta}}{\alpha > 1}$	$\frac{\alpha}{\beta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}, t<\beta$	$\begin{aligned} & \operatorname{Ga}(1,\lambda) \equiv \operatorname{Expon}(\lambda) \\ & \operatorname{If} \nu \text{ is an integer, } \operatorname{Ga}(\nu/2,2) \text{ is } \chi_{\nu}^2, \\ & \operatorname{the Chi-squared distribution} \\ & \operatorname{with} \nu \text{ df.} \end{aligned}$

