The statistical problem solving cycle

Data are numbers in context and the goal of statistics
is to get information from those data, usually through
problem solving. A procedure or paradigm for statistical
problem solving and scientific enquiry is illustrated in the
diagram. The dotted line means that, following discus-
sion, the problem may need to be re-formulated and at
least one more iteration completed.
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Descriptive statistics
Given a sample of n observations, x1, 2, ...
the sample mean to be

, Tn, we define
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% is sometimes called the mean squared deviation. An

n
unbiased estimator of the population variance, o2, is s> =

Sea
(n—1)
ing s2, the divisor (n — 1) is called the degrees of freedom
(df). Note that s is also sometimes written & .

If the sample data are ordered from smallest to largest
then the:

minimum (Min) is the smallest value;

lower quartile (LQ) is the 4(n + 1)-th value;

median (Med) is the middle [or the %(n + 1) -th] value;
upper quartile (UQ) is the %(n + 1)-th value;

maximum (Max) is the largest value.

These five values constitute a five-number summary of
the data. They can be represented diagrammatically by a
box-and-whisker plot, commonly called a boxplot.

. The sample standard deviation is s. In calculat-
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Grouped Frequency Data

If the data are given in the form of a grouped frequency
distribution where we have f; observations in an interval
whose mid-point is x; then, if Z fi=n
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Events & probabilities

The intersection of two events A and B is AN B. The union
of Aand B is AU B. A and B are mutually exclusive if
they cannot both occur, denoted A N B = () where 0 is
called the null event. For an event A, 0 < P(A) < 1. For
two events A and B

P(AUB) = P(A)+ P(B) — P(ANB).
If A and B are mutually exclusive then
P(AUB) = P(A) + P(B).
Equally likely outcomes
If a complete set of n elementary outcomes are all equally
likely to m cur, then the probability of each elementary out-

come is ; If an event A consists of m of these n elements,
then P(A) = 2.

mn

Independent events
A, B are independent if and only if P(ANB) = P(A)P(B).

Conditional Probability of A given B:

P(A|B}=% if P(B)+#0.
Bayes’ Theorem: P(B|A) = %

Theorem of Total Probability
The k events By, B, ... By form a partition of the sample
space S if ByUB2UB;...UB;, = 5 and no two of the B;’s

can occur together. Then P(A) = ZP A|B;)P(Bi). In

this case Bayes’ Theorem generalizes to
P(A|B;)P(Bs)

2, P(A|B;)P(B;)

If B' is the complement of the event B , P(B') = 1— P(B)

and P(A) = P(A|B)P(B)+ P(A|B")P(B’) is a special case

of the theorem of total probability. The complement of the

event B is commonly denoted B.

P(B;|A) =

(i=1,2...k)
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Permutations and combinations
The number of ways of selecting r objects out of a total of

n, where the order of selection is important, is the number

n!

of permutations: "P,. = The number of ways in

n—r)
which r objects can be selected from n when the order of
selection is not important is the number of combinations:
ny _ n!

r] ol n—r)!
"Co=1; "Cr =" Ch—r. Also

"Cr = . "C, must equal 1, so 0! = 1 and

"Co+"C1+..."Cn1 +"C =2"

) n+lc:-r —"n Cr +'n Cr—l
Random variables

Data arise from observations on variables that are mea-
sured on different scales. A nominal scale is used for named
categories (e.g. race, gender) and an ordinal scale for data
that can be ranked (e.g. attitudes, position) - no arithmetic
operations are valid with either. [Interval scale measure-
ments can be added and subtracted only (e.g. tempera-
ture), but with ratio scale measurements (e.g. age, weight)
multiplication and division can be used meaningfully as
well.  Generally, random variables are either discrete or
continuous. Note: in reality, all data are discrete because
the accuracy of measuring is always limited.

A discrete random variable X can take one of the values
Z1,22,..., , the probabilities p; = P(X = x;) must satisfy
pi = 0 and py +p2 +... = 1. The pairs (z;,p;) form the
probability mass function (pmf) of X.

A continuous random variable X takes values z from a con-

tinuous set of possible values. It has a probability density
function (pdf) f(z) that satisfies f(z) > 0 and [ f(z)dz =

b
1, with Pla <z <b) = [ fla)dz.

Expected values “

The expected value of a function H(X) of a random vari-
able X is defined as

[ Y H(z))P(X =), X discrete.
E[H(X)] = { [ H(z)f(z)dz, X continuous.

Expectation is linear in that the expectation of a linear
combination of functions is the same linear combination of
expectations. For example,

E[X? +logX + 1] = E[X?] + EllogX] + 1

but

EllogX] # logE[X] and E[1/X] # 1/E[X]

Variance
The variance of a random variable is defined as

Var(X) = E[(X — p)’] = E[X?] — 4
Properties:
Var(X) > 0 and is equal to 0 only if X is a constant.
Var(aX + b) = a®*Var(X), where a and b are constants.
Moment generating functions
The moment generating function (mgf) of a random vari-
able is defined as

Mx (t) = Elexp(tX)] if this exists.

E[X*] can be evaluated as the:

(i) coefficient of % in the power expansion of Mx (t).

(ii) r-th derivative of Mx (t) evaluated at ¢ = 0.
Measures of location

The mean or expectation of the random variable X is
E[X], the long-run average of realisations of X. The mode
is where the pmf or pdf achieves a maximum (if it does
so). For a random variable, X, the median is such that
P(X < median) = %, so that 50% of values of X occur
above and 50% below the median.

Percentiles

xp is the 100-p-th percentile of a random variable X if
P(X < z,) = p. For example, the 5th percentile, xo.05,
has 5% of the values smaller than or equal to it. The
median is the 50-th percentile, the lower quartile is the
25th percentile, the upper quartile is the 75th percentile.
Measures of dispersion

The inter-quartile range is defined to be the difference
between the upper and lower quartiles, UQ - LQ. The
standard deviation is defined as the square root of the
variance, ¢ = /Var(X), and is in the same units as the
random variable X.

Cumulative Distribution Function
This is defined as a function of any real value ¢ by

F(t)=P(X <t)
If X is a continuous random variable, F' is a continuous
function of t; if X is discrete, then F is a step function.
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The Central Limit Theorem

If a random sample of size n is taken from any distribution
with mean g and variance o2, the sampling distribution
of the mean will be approximately ~ N(yu,a?/n), where ~
means ‘is distributed as’. The larger n is, the better the
approximation.

The standard normal and Student’s ¢ distributions
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If a random variable X ~ N(u,0?), z = (X — p)/o ~
N(0, 1), the standard normal distribution. The t distribution
with (n — 1) degrees of freedom is used in place of z for
small samples size n from normal populations when o2 is
unknown. As n increases the distribution of ¢ converges
to N(0,1). These distributions are used, e.g., for inference
about means, differences between means and in regression.

Fisher’s F distribution

F(F)

The E

1020 distribution

T 5 3
If Xy ~ XEJ and Xz ~ xﬁz are independent random vari-
ables then
X 1 / 18] ~
Xo/vo
the F distribution with (v1,12) degrees of freedom. This
distribution is used, for example, for inference about the
ratio of two variances, in Analysis of Variance (ANOVA)
and in simple and multiple linear regression.

Foi v



Statistics & Sampling Distributions

Population and samples

A (statistical) population is the complete set of all pos-
sible measurements or values, corresponding to the entire
collection of units, for which inferences are to be made
from taking a sample - the set of measurements or values
that are actually collected from a population.

Simple random sample: every item in the population is
equally likely to be in the sample, independently of which
other members of the population are chosen.

Parameter: a quantity that describes an aspect of a pop-
ulation, eg. the population mean, p, or variance, o°.
Statistic: a quantity calculated from the sample, e.g. the
sample mean, &, or variance, s°.

Sampling distributions: The value of a statistic will in
general vary from sample to sample, in which case it will
have its own probability distribution, called its sampling
distribution. A statistic used to estimate the value of a
parameter 6 in a distribution is called an estimator (the
random variable) or an estimate (the value).

If 6 is an estimator of # , the mean of its sampling distri-
bution, E[f], is called the sampling mean. The variance,
Var(f), is called the sampling variance.

\/Var(# ) is called the standard error of § . If E[f] = 6,

then 6 is an unbiased estimator of § e.g. X is an unbi-
2

ased estimator for p and has sampling variance 2~ where

Var(X; ) = o2, (i=1,2,...,n).

Corrected sum of squares

Ser = (o= 2 = St - nat = 30t - 2L

has expectation (n — 1)o? so that dividing S.. by (n —1)
will give an unbiased estimator of o2, denoted s2.

Normal and Chi-squared distributions

If X1, X2,... X, are independently and identically ~ N(p, a?),

Xi —p\? : . S
then E (—u) ~ x2, a Chi-squared distribution
o

with n degrees of freedom.
= "'2 . S:CJ‘ 2
Also X ~ N (p, T) independently of 2~ X{n—1)-

Simple Linear Regression

To fit the straight line y = o + Bz to data (zi,y:), i =
1,2,...n by the method of least squares the estimates of
slope, 3, and intercept, a , are given by:

b= Ywiyi — 5 (@i > yi) _ Say
Ya?- (X w)’ Sea’

If we assume that the z; are known and that the y; have

normal distributions with means a + (Gz; . and constant

variance o2, written as y; ~ N(a + fzi,07), then if xg is

a fixed value )
a
b~ N |/
(ld, S:!::c )

2 [1 &P
~N -
a ((x,or {’n. + 5. })

a2
a+brg~ N (rx—i—_[)’:x‘:()-.rr2 {% + (:r[;Si.r)})

a=179—bx

A common alternative is to use & for a and ,f;’ for b.
Correlation

Given observations (xi,v:), ¢ = 1,2,...,n on two random
variables X and Y the Pearson (product moment) corre-
lation between them is given by:

Say  _ iy — w (X Y ui)
VBB [5a? — LS’ 2u - 2 (S w)’

We use r to estimate the correlation, p , between X and

r=

Y. For large n, r is approximately ~ N (p: ﬁ) The
(Spearman) Rank Correlation Coefficient is given by

63 d;

=T n(n? —1)

where d; is the difference between the ranks of (zi,y:),
i=1,2,...,n . If ranks are tied, see further reading.

Further reading: Kotz, S., and Johnson,L. (1988) Ency-
clopedia of Statistical Sciences, Vols.1-9. New York: John
Wiley and Sons.
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Time Series

A time series Y; (t = 1,2,...,n) is a set of n observations
recorded through time ¢, (e.g. days, weeks, months). The
arithmetic mean of blocks of k successive values

Vi+Yo+... 4+ Yo+ Y5+, . 4+Yn
B , A

is a simple moving average of order k, itself a time series
which is smoother than Y; and can be used to track, or
estimate, the underlying level, p;, of ¥;. If 0 < v < 1 an
exponentially weighted moving average (EWMA) at time
t uses a discounted weighted average of current and past
data to estimate p; with

pw=aYi+a(l—a)Y, 1 +a(l—a)*Yio+...
This is equivalent to the recurrence relation
i =aYy + (1 —a)fi—

Moving averages are often plotted on the same graph as Y;.
If Y} additionally contains trend, FR;, the rate of change
of data per unit time, and gy = pe—1 + Ri—1, then the
recurrence relation is

i = oY+ (1 —a)(fu_1 + Ri1)
If 0 < 3 < 1 the trend smoothing equation is
ﬁ:. = {j(ﬁr - ,&f._1) =+ (1 - ,.'(j)ffr.—l

known as Holt's Linear Exponential Smoothing. If Y; also
contain seasonality, Si, a smoothing constant =,

(0 < v < 1) is used in a seasonal smoothing equation,
S, = Y/ + (1 — ‘]/)S.r_—k; assuming the periodicity is k,
with multiplicative seasonality. For monthly data k = 12.

Forecasting from time n (now) to time n+h (h =1,2,...)

Level only, Y4 = fin , the latest EWMA.

Level and constant trend, Y1 = a + b(n + h), the simple
linear regression trend line of Y, against £.

Level and changing trend, }A",._+h = fin + hR,.

Level, changing trend and seasonality l"/“+;._n = fin + hRy,
where i, = oY, /Sn—12 + (1 — @) (fin—1 + Rn_1).



A hypothesis test involves testing a claim, or null hypothesis
Hy, about a parameter against an alternative, H,. A decision
to reject Hy or not reject Hy uses sample evidence to calcu-
late a test statistic which is judged against a critical value. Hy
is maintained unless it is made untenable by sample evidence.
Rejecting Hy when we should not is a Type | error. The prob-
ability (we are prepared to accept) of making a Type I error is
called the significance level o and yields the critical value. The
smallest ov at which we can just reject Hy is the p-value of the
test. Not rejecting Hp when we should is a Type Il error, with
probability 3. The power of a hypothesis test is 1 —3. An inter-
val estimate for a parameter is a calculated range within which

it is deemed likely to fall.

Given «, the set of intervals from

infinitely repeated random samples of size n will contain the pa-
rameter (100 — a)% of the time: each interval is a (100 — a)%

confidence interval.

Standard statistical distributions

One sample hypothesis tests
1. For X ~ N(u,0?), a2 known; random sample evidence & and
n. Null hypothesis, Ho : g = po; 2-sided alternative Hy : p #

mgf—‘/p?_: ~ N(0,1). Reject Ho (at the
a level) if |zcale| > Za 2 the critical value of z.

2. For X ~ N(u,0%), o? unknown; random sample evidence
z, s and n. Null hypothesis, Hy @ p = po; 2-sided alternative
Hy 1 7‘-‘ - xs_\/? ~ t(n—l)-. the
distribution with (n — 1) df. For n > 30 and if X has any
distribution, £ ~ N(0,1). Reject Ho if |tcaic| = to 2, the critical
value of ¢ with (n — 1) df.

3. For X ~ N(p,o?), o unknown; random sample evidence s
and n. Null hypothesis, Ho : ¢° = of; alternative H, : o> >
oa. Test statistic x2ue = (n— 1)s%/o5 ~ xa_1. Reject Hy if
XZae > X2, the critical value of x? with (n — 1) df.

In each case the p-value is the tail area outside the calculated
statistic.

po. Test statistic zeae =

Test statistic teae =

Two sample hypothesis tests
For X1 ~ N(u1,0%), Xo ~ N(ua,03), o2, o5 unknown; random
sample evidence &y, T2, s7, 53, n1 and na.
1. Null hypothesis, Hy = p1 — pu2 = ¢; 2-sided alternative H; :

(!]_','1 — f,'g — (!) -~
sv/1/n1 + 1/n2

2 2

2 _ (m (;33_1;2(7122) 1)323 assuming o} = o3.
Hy if [teale| > to o the critic dl value of t with (n1 +n2 — 2) df.
2. Null hypothesis Hy : o? = o2 alternative Hy, : o7 > o2,

o 2
(m = Dsi Reject Ho if

1 — po # c. Test statistic teae = tiny+na—2)

and s Reject

Test statistic Frale = ~ Fai—1ma-1 -

(no — 1)s2
Frale > F, the critical value of F with n; — 1 and ns — 1 df.

Confidence interval for a population mean - o2 unknown

If X has mean p and variance o2, with n > 30 an appmximate

tu/?" T4 22 u/‘!"
v v

If X ~ N(pt,0?) the interval is exact for all n.

100(1 — @)% confidence interval for p is T —

Name/parameters Conditions/application pdf/pmf Mean Variance mgf Notes
Binomial n independent success/fail tri- n
Bin(n, p) als each with probability p of | P(X =2z) = ( )pr(l —-p)"" - X ~ Bin (n,p)
Positive integer n success. X = number of suc- * np np(l=p) (1=p+pe) =n— X ~ Bin(n,1—p)
Probability p, 0 <p <1 cesses. r=0,1,....n
Geometric Repeated independent suc-
Geom(p) cess/fail  trials each with P(X=z)=(1-=p)"'p 1 1—p pe Has the “lack of memory” property
Pr-obalfilit 0<p<1 probability p of success. X = x=1,2,... P p? 1 (1 p}c_,g P(X>a+b|X>b) = P(X >a)
ypUSP= number of trials up to and
including the first success.
Poisson Events occur randomly at a A
N constant rate. X = number of P(X =)= ¢ Useful as approximation to Bin(n, p)
Po(A) . . ] A A exp(Ale’ — 1)) e . .
- occurrences in some interval. A —0.1.2 if n is large and p is small
A a positive number . x=01,2,
is the expected number of oc-
currences
Normal A wldely. used d.lstrllbutlon for 1 (z — p)? Can approximate Binomial, Poisson
. 2 symumetrically distributed ran- flz) = —=exp | — : 2 1 25 s
N(p,o7) . i a2 202 I a exp| put + =o”t Pascal and Gamma distributions
dom variables with mean j and " 2 \ R
i, o both real; o > 0 L all real @ (see Central Limit Theorem)
standard deviation o.
Exponential ]:;;::nlf;i:lrteir?:::m;ng—aij:::etg Sf(z) = Bexp(—0x) 1 1 (7] t <o Has the “lack of memory” property
Expon(#) ! ) - ’ x>0 ] 92 o—t P(X>a+b|X >b)=P(X >a)
first occurrence.
Negative-binomial or Repeated independent suc- 1
Pascal cess/fail  trials each with P(X =ua)= ( ) )p (1—p)y " T r(l—p) pe' " _
Pasc(r, p) probability p of success. X = r- P p? 1—(1—pet Pasc(1,p) = Geom(p)
Positive integer n number of trials up to and | T=7THLT+2,...
Probability p, 0 <p <1 including the r-th success.
. enerallzation of (he exponen- " o Ga(1, %) = Expon()
Gamma tial distribution; if « is an in- / a1 —dr . o \ . . 3
; . .. flz) = =—z"""e - o 3 If v is an integer, Ga(r/2,2) is x5,
Gale, 8) teger it represents the waiting ) ) 3 -1 A< B the Chi-sauared distribution
a3 >0 time to the a-th occurrence of x>0 a>1 ' s . 4 '
. with v df.
a random event where 3 is the
expected number of events.
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