
Simple linear regression 
 
 

Introduction 
 

Simple linear regression is a statistical method for obtaining a formula to predict 

values of one variable from another where there is a causal relationship between the 

two variables. 

 

 

 

Straight line formula 

 
Central to simple linear regression is the formula for a straight line that is most 

commonly represented as cmxy   or bxay  . Statisticians however generally 

prefer to use the following form involving betas:  

 

xy 10    

 

The variables y and x are those whose relationship we are studying. We give them the 

following names: 

 

 y: dependent (or response) variable; 

 x: independent (or predictor or explanatory) variable. 

 

It is convention when plotting data to put the dependent and independent data on the y 

and x axis respectively; 

 

 
 

0  and 1 are constants and are parameters (or coefficients) that need to be estimated 

from data. Their roles in the straight line formula are as follows: 

 

 0 : intercept; 

 1 : gradient. 

 



For instance the line xy 5.01  has an intercept of 1 and a gradient of 0.5. Its graph 

is as follows: 

 
 

 

Model assumptions 
 

 In simple linear regression we aim to predict the response for the ith individual, iY , 

using the individual‟s score of a single predictor variable,  iX . The form of the model is 

given by: 

 

iii XY   10  

 

which comprises a deterministic component involving the two regression coefficients 

( 0  and  1 ) and a random component involving the residual (error) term ( i ).  

 

The deterministic component is in the form of a straight line which provides the 

predicted (mean/expected) response for a given predictor variable value. 

 

The residual terms represent the difference between the predicted value and the 

observed value of an individual.  They are assumed to be independently and 

identically distributed normally with zero mean and variance 2 , and account for 

natural variability as well as maybe measurement error. Our data should thus appear 

to be a collection of points that are randomly scattered around a straight line with 

constant variability along the line: 

 

 



The deterministic component is a linear function of the unknown regression 

coefficients which need to be estimated so that the model „best‟ describes the data. 

This is achieved mathematically by minimising the sum of the squared residual terms 

(least squares). The fitting also produces an estimate of the error variance which is 

necessary for things like significance test regarding the regression coefficients and for 

producing confidence/prediction intervals. 

 

 

Example 
 

Suppose we are interested in predicting the total dissolved solids (TDS) 

concentrations (mg/L) in a particular river as a function of the discharge flow (m
3
/s). 

We have collected data that comprise a sample of 35 observations that were collected 

over the previous year.  

 

The first step is to look carefully at the data: 

 

 Is there an upwards/downwards trend in the data or could a horizontal line be 

fit though the data?    

 Is the trend linear or curvilinear? 

 Is there constant variance along the regression line or does it systematically 

change as the predictor variable changes? 

 

                  
 

The scatterplot above suggests that there is a downwards trend in the data, however 

there is a curvilinear relationship. The variance about a hypothetical curve appears 

fairly constant. 

 

 

  

0 2000 4000 6000 8000

Discharge flow

200

300

400

500

600

700

T
o

ta
l 
d

is
s

o
lv

e
d

 s
o

li
d

s
 c

o
n

c



Transformations 
 

Simple linear regression is appropriate for modelling linear trends where the data is 

uniformly spread around the line. If this is not the case then we should be using other 

modelling techniques and/or transforming our data to meet the requirements. When 

considering transformations the following is a guide: 

 

 If the trend is curvilinear consider a transformation of the predictor variable, x. 

 If constant variance is a problem (and maybe curvilinear as well) consider 

either a transformation of the response variable, y, or a transformation of both 

the response and the predictor variable, x and y. 

 

Tukey‟s  “bulging rule” can act as a guide to selecting power transformations. 

 
Compare your data to the above and if it has the shape in any of the quadrants then 

consider the transformations where: 

 

 up – use powers of the variable greater than 1 (e.g. x
2
, etc); 

 down - powers of the variable less than 1 (e.g. log(x), 1/x, √x etc). 

 

Note, sometimes a second application of Tukey‟s bulging rule is necessary to gain 

linearity with constant variability. 
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Example (revisited) 
 
 

Returning to our example, the scatterplot reveals the data to belong to the bottom left 

quadrant of Tukey‟s bulging rule. Since the variance about a hypothetical curve 

appears fairly constant, thus we shall try transforming just the predictor variable.  

Tukey‟s bulging rule suggests a “down” power; we shall try the log natural 

transformation first 

 

The resulting scatterplot of TDS against ln(Discharge) is now far more satisfactory: 

 

 

   
 

 
 

The data now appears to be suitable for simple linear regression and we shall now 

consider selected output from the statistics package SPSS. 

 

The correlations table displays Pearson correlation coefficients, significance values, 

and the number of cases with non-missing values. As expected we see that we have a 

strong negative correlation (-.735) between the two variables. From the significance 

test p-value we can see that we have very strong evidence (p<0.001) to suggest that 

there is a linear correlation between the two variables.  

Correlations
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The model summary table displays: 

 R, the multiple correlation coefficient, is a measure of the strength of the 

linear relationship between the response variable and the set of explanatory 

variables. It is the highest possible simple correlation between the response 

variable and any linear combination of the explanatory variables. For simple 

linear regression where we have just two variables, this is the same as the 

absolute value of the Pearson‟s correlation coefficient we have already seen 

above. However, in multiple regression this allows us to measure the 

correlation involving the response variable and more than one explanatory 

variable.   

 R squared is the proportion of variation in the response variable explained by 

the regression model. The values of R squared range from 0 to 1; small values 

indicate that the model does not fit the data well. From the above we can see 

that the model fits the data reasonably well; 54% of the variation in the TDS 

values can be explained by the fitted line together with the lnDischarge 

values. R squared is also known as the coefficient of determination. 

 The R squared value can be over optimistic in its estimate of how well a 

model fits the population; the adjusted R square value is attempts to correct for 

this. Here we can see it has slightly reduced the estimated proportion. If you 

have a small data set it may be worth reporting the adjusted R squared value. 

 The standard error of the estimate is the estimate of the standard deviation of 

the error term of the model, . This gives us an idea of the expected 

variability of predictions and is used in calculation of confidence intervals and 

significance tests. 

 

 

 
 

The unstandardized coefficients are the coefficients of the estimated regression 

model. Thus the expected TDS value is given by: 

)ln(275.101967.1103 argeDischTDS  . 

Model Summaryb

.735a .540 .526 78.261

Model

1

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Predictors: (Constant), ln(Discharge flow)a. 

Dependent Variable: Total dissolved solids concb. 

Coefficientsa

1103.967 105.320 10.482 .000 889.693 1318.242

-101.275 16.281 -.735 -6.221 .000 -134.399 -68.152

(Constant)

ln(Discharge flow)

Model

1

B Std. Error

Unstandardized

Coefficients

Beta

Standardized

Coefficients

t Sig. Lower Bound Upper Bound

95% Confidence Interval for B

Dependent Variable: Total dissolved solids conca. 



Thus we can see that for each one unit increase in ln(Discharge), the TDS value is 

expected to decrease by 101.275 units. The intercept for this example could be 

interpreted as the TDS value (1103.967) when the ln(Discharge) flow is zero (i.e. 

Discharge = 1 m
3
/s. 

The standardized coefficients are appropriate in multiple regression when we have 

explanatory variables that are measured on different units. These coefficients are 

obtained from regression after the explanatory variables are all standardized. The idea 

is that the coefficients of explanatory variables can be more easily compared with 

each other as they are then on the same scale. In simple linear regression they are of 

little concern. 

 
The standard errors give us estimates of the variability of the (unstandardised) 

coefficients and are used for significance tests for the coefficients and for the 

displayed 95% confidence intervals. The t values and corresponding significance 

vales are tests assessing the worth of the (unstandardised) coefficients. It is usually of 

importance to be assessing the worth of our predictor variable and hence evaluating 

the significance of the coefficient 1  in our model formulation. That is we are 

assessing for evidence of a significant non-zero slope. If the coefficient is not 

significantly different to zero then this implies the predictor variable does not 

influence our response variable. 

 

Here we have both test are highly significant (p<0.001), indicating that we have very 

strong evidence of need both the coefficients in our model. The resulting confidence 

intervals expand our understanding of the problem. For example, with 95% 

confidence we believe that the interval between -134.399 and -68.152 covers the true 

unknown TDS value change per ln(Discharge) unit.   

 

The remaining output is concerned with checking the model assumptions of 

normality, linearity, homoscedasticity and independence of the residuals. Residuals 

are the differences between the observed and predicted responses. The residual 

scatterplots allow you to check: 

 

 Normality: the residuals should be normally distributed about the predicted 

responses; 

 Linearity: the residuals should have a straight line relationship with the 

predicted responses; 

 Homoscedasticity: the variance of the residuals about predicted responses 

should be the same for all predicted responses. 

 

 

Residuals Statisticsa

198.53 558.19 454.00 83.491 35

-128.404 214.702 .000 77.101 35

-3.060 1.248 .000 1.000 35

-1.641 2.743 .000 .985 35

Predicted Value

Residual

Std. Predicted Value

Std. Residual

Minimum Maximum Mean Std. Deviation N

Dependent Variable: Total dissolved solids conca. 



 

 
The above table summarises the predicted values and residuals in unstandarised and 

standardised forms. It is usual practice to consider standardised residuals due to their 

ease of interpretation. For instance outliers (observations that do not appear to fit the 

model that well) can be identified as those observations with standardised residual 

values above 3.3 (or less than -3.3). From the above we can see that we do not appear 

to have any outliers.  

 

 
 

The above plot is a check on normality; the histogram should appear normal; a fitted 

normal distribution aids us in our consideration. Serious departures would suggest that 

normality assumption is not met. Here we have a slight suggestion of positive 

skewness but considering we have only 35 data points we have no real cause for 

concern. 

 
The above plot is a check on normality; the plotted points should follow the straight 

line. Serious departures would suggest that normality assumption is not met. Here we 

have no major cause for concern. 

-2 -1 0 1 2 3

Regression Standardized Residual

0

2

4

6

8

10

F
re

q
u

e
n

c
y

Mean = 3.52E-16
Std. Dev. = 0.985
N = 35

Dependent Variable: Total dissolved solids conc

Histogram

0.0 0.2 0.4 0.6 0.8 1.0

Observed Cum Prob

0.0

0.2

0.4

0.6

0.8

1.0

E
x

p
e

c
te

d
 C

u
m

 P
ro

b

Dependent Variable: Total dissolved solids conc

Normal P-P Plot of Regression Standardized Residual



-1 0 1 2 3 4 5 6

Regression Standardized Predicted Value

-2

0

2

4

R
e

g
re

s
s

io
n

 S
ta

n
d

a
rd

iz
e

d
 R

e
s

id
u

a
l

Dependent Variable: y

Scatterplot

 
 

 

The above scatterplot of standardised residuals against predicted values should be a 

random pattern centred around the line of zero standard residual value. The points 

should have the same dispersion about this line over the predicted value range. From 

the above we can see no clear relationship between the residuals and the predicted 

values which is consistent with the assumption of linearity. The dispersion of 

residuals over the predicted value range between -1 and 1  looks constant, for 

predicted values below -1 there is too few points to provide evidence against a change 

in variability. 
 

 

 

Model violations 
 

So what do residual scatterplots of models that violate the model look like? Here are 

two common examples together with suggested remedies for the next regression to 

try. 
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R Sq Linear = 0.54
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Dependent Variable: y

Scatterplot

In the plot above there is clear evidence of heteroscedasticty; change of variance with 

predicted value. Try log natural or square root transformation of y to stabilise 

variance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the plot above there is a clear curved pattern in the residuals. Try transforming x to 

obtain a linear relationship between it and the response variable.  

 

 

Example (revisited) 

 
In order to get TDS predictions for particular Discharge values we can use the fitted 

line, say for a Discharge of 2000 m3/s: 

 

186334         

)2000ln(275.101967.1103

.

TDS




 

Alternatively, we could let a statistics like SPSS to do the work and calculate 

confidence or prediction intervals at the same time. We shall now consider some of 

the other output that SPSS gives us. 

 

The following gives the fitted line together with 95% confidence interval for the 

expected TDS response. 

 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

When requesting a predicted value we can also obtain the following: 

 

 the predicted values for the various Discharges together with the associated 

standard errors of the predictions; 

 95% CI for the expected response; 

 95% CI for individual predicted responses; 

 

 

For example for a Discharge of 2000 m3/s: 

 the expected TDS is 334.18 mg/L (s.e. = 23.366); 

 we are 95% certain that interval from 286.64 to 381.72 mg/L covers the 

unknown expected TDS value; 

 we are 95% certain that interval from 168.01 to 500.35  mg/L covers the range 

of predicted individual TDS observations. 
 

 

Caution: beware of extrapolation! It would be unwise to predict the TDS for a 

Discharge value of 12,000 m
3
/s as this is far beyond the observed data range. 

 

 


